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Abstract: A derivation is given of simplified, exact stability design rules according to limit analysis, applied to timber 

beam-columns. These rules are lacking but are necessary to be able to provide real and calculable reliability as is required 

according to European pacts and laws. Necessary therefore are the obtained exact combined bi-axial bending, compres-

sion and shear strength equations with the exact equilibrium equations under biaxial loading. As for other materials the 

elastic-full plastic limit design approach is applied, which is already known to precisely explain and predict uniaxial bend-

ing strength behavior. The strength derivation is based on choosing the location of the neutral line. This provides the stress 

distribution in the beam cross section in the ultimate state for that case, providing the possibility to calculate the associ-

ated ultimate bending moments in both main directions combined with the ultimate normal- and shear forces.  

The derived general strength and equilibrium equations are simplified to possible elementary design equations, applicable 

for building regulation.  
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1. INTRODUCTION 

The exact lower bound equilibrium method of limit 
analysis is based on finding an allowable equilibrium sys-
tem, (given in Chapter 3), which nowhere surmounts the 
failure criterion. This failure criterion, derived in Chapter 2, 
is an applicable and systematized extension of [1]. Buckling 
is a three-dimensional problem due to initial eccentricities 
and because it never is possible to have deformations and 
loading actions to be precisely zero and thus to get exactly a 
two-dimensional planar structure and thus to get the possibil-
ity of bifurcation. All deformations start at the beginning of 
loading. Calculations of large deflections of beam-columns 
by third order theory ([2] p. 188) show that there always is a 
rise of the loading-curve at increasing torque and out of 
plane deformation, as given by (Fig. 1).  

It thus is necessary to have plastic flow, causing stiffness 

decrease, to bend down the loading curve and the top of the 
loading curve then represents the ultimate strength which 

thus is always determining for buckling in practice. Al-

though for a compact strong material, as steel, it should be 
possible, by machine testing, to go over the top of the load-

ing curve when the test rig - specimen assembly could be 

made stiff enough, this unloading is not possible by the in 
practice occurring dead load loading and total failure is 

shown to occur at the top of the curve (see Fig. 2). Testing at 

Stevin Laboratory on full structural scale and semi-full scale 
glulam beams with perfect boundary conditions confirmed 

this behavior. To investigate buckling behavior at different 

loading conditions, very slender beams, with very low  
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bearing capacities, also were tested. The tests of these slen-
der beams were stopped at a very small lateral deformation 
at the point where the lateral rate of deformation started to 
increase strongly. This point was supposed to be the starting 
point of bifurcation. However it appeared by the first tests, 
by the cracking sound and the afterwards measured decrease 
of the lateral modulus of elasticity, that damage did occur. 
This means that the elastic limit (the start of compressional 
“flow”), thus the start of decrease of the modulus of elastic-
ity, determines buckling behavior and biaxial buckling is 
plastically and a common ultimate strength problem. The 
solution thus has to satisfy equilibrium and compatibility 
conditions, (given in Chapter 3), and as stress-strain relation, 
the elastic-full plastic behavior applies, according to limit 
analysis (thus with an averaging effect of some hardening). 
For design the ultimate state is important and it is not neces-
sary to follow the loading history dependent loading curve 
(line EA of Fig. 2) by the descriptive tangent stiffness ap-
proach. In practice the linear elastic line DA or 0A of  
(Fig. 2) is followed. For the bending strength of lateral sup-
ported beams, the elastic-plastic stress diagram or the ulti-
mate state at point A, is given by the drawn lines in (Fig. 3). 

At unloading the behavior is linear elastic according to 
the dashed line in (Fig. 3) and the stress difference between 
the dashed and drawn lines of (Fig. 3) gives an internal equi-
librium system of the residual stresses after unloading. After 
reloading, the dashed stress diagram is again superposed, 
giving the definition of the apparent bending stress 

m
!  with 

the possibility of a linear elastic calculation, according to the 
dashed line in (Fig. 3), up to the ultimate failure state 

m
f . It 

however is necessary to correct the deformation in accor-
dance with the real deformation given by tensile gradient of 
the drawn lines in (Fig. 3). This means that the linear elastic 
modulus of elasticity has to be reduced by a factor 

2 / (1 / )
t c

! !+ , where 
t

!  and 
c

!  are the real occurring 



Exact Stability Calculation for Timber Beams and Columns The Open Construction and Building Technology Journal, 2013, Volume 7    21 

 

Fig. (1). Deformation of a beam column 

according to 3
rd

 order analysis. 

 

Fig. (2). Scheme of elastic-plastic buckling. 

 

 

Fig. (3). Bending and shear strength. 

 

 
maximum tensile and compression stresses along the beam. 
In (Fig. 3), of the ultimate state, this factor is: 

2 / (1 / )
t c

f f+ =  2/(1+3) = 0.5, showing the real elastic-
plastic rotation to be a factor 2 higher with respect to the 
dashed bending stress diagram. In [3] different possibilities 
are discussed to account for this compliance increase. In the 
past this factor 2 was safely accounted for any load distribu-
tion in the Building Codes  

2. EXACT BIAXIAL BENDING STRENGTH EQUA-
TIONS 

2.1. Introduction 

It is a prescribed custom to transform the ultimate 

strength state of timber beams to linear, quasi isotropic, be-
havior for the loading case of bending, compression with 

shear and to apply common beam theory. The consequence 

of this choice is that fictive bending strength 
m

f , based on 
the linearized bending stress in the failure state, given in [4], 

therefore only applies to rectangular cross-sections (and not 

for profiles) for the most elementary loading case. For com-
bined loading cases and to explain measurements, the elas-

tic-full plastic diagram (of Fig. 3) has to be used as shown 

e.g. in [3], where the derivation is given of the uniaxial bend-
ing, compression and shear strength of timber beams. For 

profiles this elastic-plastic approach has to be applied to ob-

tain the necessary profile factors on the fictive linear bending 
strength 

m
f . The elastic-full plastic approach is the basis for 

limit design and is an exact approach which applies for all 

materials as is extensively shown for other materials as steel 
and concrete [2] and provides a critical loading path for real 

strength prediction. For wood this necessary design method 

was already generally applied since 1930 (see [5]). Neces-
sary for stability design and for the prescribed calculable 

reliability, is the hereupon based exact bi-axial bending 

strength criterion, combined with normal compression and 
shear loading which is mathematically derived in [6]. The 

resulting elastic-plastic stress diagram, with a negligible 

plastic range for tension, as applied in the figures below, 
represents an admissible equilibrium system, satisfying equi-

librium and boundary conditions, violating nowhere the yield 

criterion, and thus is a lower bound solution of limit analysis. 
The highest lower bound solution is equal to the real strength 

and this is reached in this case when the neutral line is a 

straight line and when unlimited flow in pure compression is 
possible, thus when the shear stress is carried in the elastic 

part of the cross section. Thus, as confirmed in [3], the 

uniaxial ultimate combined bending-compression strength is 
determined by the ultimate tensile stress 

t
f  and by unlimited 

“flow” in compression at the flow compression stress 
c

f . 

Bending failure thus always is an ultimate tension failure at 

t
f . This therefore is the starting point for the derivations in 

[6] and is an improvement with respect to the old model, 

applied in [7], which was based on a limited ultimate com-
pression strain and therefore did not explain and fit precisely 

to the data.  
The derivations in [6] of the following equations are 

based on choosing the location of the neutral line and calcu-

late the associated ultimate bending moments and normal 
and shear forces. There are three cases to regard for the loca-

tion of the neutral line. The neutral line may go through two 

opposite planes of the cross section (Case I) as given in  
(Fig. 4), or the neutral line goes through two adjacent planes, 

at the tension side (Case II) or at the compression side (Case 

III) as given by respectively (Figs. 5 and 6). Mathematically 
simpler is not to choose the location of the neutral line but of 

the parallel border line of the full plastic compression pla-

teau of the cross section as is the basis of the following equa-
tions.  

2.2. Bi-Axial Bending Strength Cases  

2.2.1. Dominating Bending in the Stiff Direction (Case I: 
Y b!  ; Z h!   in Fig. 4)  

The ultimate state of the determining cross-section of a 

beam loaded under biaxial bending, given in (Fig. 4) for 
Case I. The line EF in (Fig. 4) is the boundary of the full 

plastic, ultimate compression strength area of the cross-

section of a beam. Fig. (4) thus gives an equilibrium state of 
a beam with dimensions b and h, loaded in “double” bend-

ing. For the analysis, the bending stresses of the ultimate 

state are regarded to be a superposition of compression force 

u c
N f bh=  of the uniform ultimate compression stress 

c
f  

over the entire cross-section and a tension force by the linear 

increasing tensile stresses in the plane ABEF with a maximal 
tensile stress 

t c
f f+  in point A (see the derivation in [6]). 
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Fig. (4). Compression with bi-axial bending. 

2.2.1.1. Normal Forces (Case I)  

The ultimate normal force 
u

N , with (for convenience) a 
positive sign for compression, is: 

( ) ( )
2 2

2 2
1 1 1 1

2 3 2 3
u c c t c c

bZ b b Z b b
N f bh T f bh f f f bh s

Y Y h Y Y

! "# $ # $
= % = % + % + = % + % +& '( ) ( )

* + * +, -

  (1) 

where /=
t c

s f f . Thus, with the maximal possible 
value of 

.u m c
N f bh=  follows for /Z h :  

( )
2

2

,

1 1 1
2 3

u

u m

NZ b b
s

h Y Y N

! "
+ # + = #$ %

& '

 (2) 

For uniaxial bending in the stiff direction, Y !"  (or: 
/ 0b Y ! ), this equation agrees with Eq.(2) of [3], where 

it was shown that the theory precisely fits the data of [7]. 
This case is determining for the possible extreme values of 
Case I: 

( ),1 / 1 / 2
u u m

N N s! ! " "      (3) 

with a tension limit (negative sign) when 1s > .  

2.2.1.2. Bending Moments (Case I) 

The bending moment by the tensile stress pyramids in the 
cross section with respect to the resultant compression force 

,u m c
N f bh= , thus with respect to the center of the cross-
section of the beam, gives:  

2 2 2 3

2 2 3
( ) 1 ( ) 2 3 2

4 3 12 2
y t c t c

bZh b b bZ b b b
M f f f f

Y Y Y Y Y

! " ! "
= + # + # + # + #$ % $ %

& ' & '

 (4) 

and thus Case I applies when: 
2( 1)

0
2 6

y c

s bh
M f

+
! ! " . 

Substitution of Z according to Eq.(2) in Eq.(4) gives: 

( )

2 2 2 3 3
,

2
2 2

,

1 / 4 6 / 4 / /
1 3

6 1 1 / / (3 )

u u mu

y c

u m

N NNbh b Y b Y b Y
M f

N s b Y b Y

! "# $ % % + %& '= % % () *) * & '+ % ++ , - .

 (5) 

Eq.(5) can be written:   

2
,

1

,

1 /
1 3

6 1

u u mu

y c

u m

N NNbh b
M f

N s Y

! " #$ %! "
= # # &'( ) ( )* +( ) + , -. /, -

    (6) 

with: 
( )

( )

2 2 3 3

1 2
2 2

4 6 / 4 / /
/

1 / / (3 )

b Y b Y b Y
b Y

b Y b Y

! + !
" =

! +

.  

In the applying range ( Z h!  and b/Y  between 0 to 1),  

( )1 /b Y!  is a bend curve which precisely can be approxi-

mated e.g. by parabola: 2

1( / ) 4 / 4( / )b Y b Y b Y! = + + ,  

or by a power form:  ( )
1.8

1( / ) 4 5 /b Y b Y! = +  (7) 

Thus: 1.82
,

,

1 /
1 3 4 5

6 1

u u mu

y c

u m

N NNbh b
M f

N s Y

! "# $# $ % # $
= % % & +' () *) * ) *) * ) *+ + ,' (+ , + ,- .

    (8) 

and b/Y is directly known from: 
y

M  and N , where 
y

M  
is the component in the stiff direction.  

The condition for application as Case I is:  

( )2 2
,

,

3 1 4 / ( 1)
0 1

6 1 2 6

u u mu

y c c

u m

s N Nbh N s bh
M f f

N s

!"! # +" +
$ $ # $ %&'&' &' &+( )( )

  

The other component in the weak direction of the biaxial 
moment is 

z
M :  

3

( ) 1
12 2

z c t

b Z b
M f f

Y Y

! "
= + #$ %

& '
     (9) 

According to the Case I boundary conditions is: 

( )20 1 / 24
z c

M f hb s! ! +      (10) 

By substitution of Z according to Eq.(2), Eq.(9) becomes: 

2

2 2

,

/ (1 / 2 )
1

6 1 / / 3

u

z c

u m

Nhb b Y b Y
M f

b Y b Y N

! "#
= $ $ #% &% &# + ' (

     (11) 

This equation can be simplified to: 

1.82 2

2

, ,

1 ( / ) 1 0.5
6 6

u u

z c c

u m u m

N Nhb hb b b
M f b Y f

N N Y Y

! "! " ! " ! "
= # $ #% = # $ # +& '& ' & ' & '& ' & ' & '( )( ) ( ) ( )

  (12) 

because 

2 3

2

1 / 2
( / ) / 0.644( / ) 0.144( / )

1 / / 3

b Y
b Y b Y b Y b Y

Y b b Y

!
" = # + !

! + +

,  

that also  can be approximated by the power form: 
1.8

2 ( / ) / 0.5( / )b Y b Y b Y! = +      (13) 

Because for Case I: Y b!  ; Z h! , is:  

( )
2 2

,

1 1
4 24

u

z c c

u m

hb N hb
M f f s

N

!"
# $ % # +&' &

( )

 

For Y !" , 0
z

M =  as follows from Eq.(9) or (11) and 

thus uniaxial bending occurs and Eq.(2) then becomes: 

( ) ,1 / (2 ) 1 /
u u m

s Z h N N+ = ! .  

When this is substituted in Eq.(4) for Y !" , the 
uniaxial bending strength becomes:  

2 2
,

,

,

1 3 4 /
( ) ( ) 1

4 6 6 1

u u m u

y t c t c c

u m

s N N NbZh bZ bh
M f f f f f

s N
!

" #$ + +
= + $ + = % % $& '& '+ ( )

 (14)  

as found before in [3], verified by the precise fit to the 
data of [7]. 

The fictive linear elastic design bending stress, applied in 
the Building Codes, thus is: 

, ,

2

,

6 1 3 4 /
1

1

y u u m u

m c

u m

M s N N N
f

bh s N
! " # $% + +

= = & & %' (' (+ ) *

     (15) 

which is equal to the uniaxial bending strength 
m

f , 
given in (Fig. 3), when 0N = , Thus: 
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 ,

2

6 3 1

1

y

m c

M s
f f

bh s

! "
= =

+

               (16) 

In [3], the value of 1.3s =  was found for the mean 
strength, while 2s =  for the 95th percentile and 0.77s =  
for the 5th percentile of the uniaxial combined bending - 
compression strength, given in (Figs. 3, 4 and 5) of [3], 
where 26 /

u m
m M f bh=  and /

u c
n N f bh= . These values 

are based on the data of [8] and apply to the total wood 
population at standard test conditions. For North European 
wood 1.56s =  was found in [9] for timber and 2.15s =  for 
veneer wood. In [3], 1.67s =  is arbitrarily assumed for sta-
bility. Higher values apply at high moisture contents. Impor-
tant is, that these values of s are independent of the load-
combination, showing that there is no, (or no strong), volume 
effect due to tensile stress distribution, but only for volume 
alone. Tensile failure thus shows some plasticity and the 
volume effect is explained by a decrease of quality with vol-
ume increase. This also explains why by not brittle compres-
sion failure a volume effect is possible (as reported in litera-
ture). Values of s should be controlled by the exact failure 
criterion [10]. 

 

 

Fig. (5). Dominating compression with bi-axial bending for Z h!  

and Y b! . 

 
2.2.1.3. Shear Force (Case I) 

The total ultimate resulting shear force 
u

V  ( )2 2

x y
V V= +  

in the elastic region of eq.(19) the cross section is: 

2
1

3 2
u v

b
V f bZ

Y

!"
= #$ %

& '

              (17) 

based on the parabolic shear stress distribution in the 
elastic region. The the possible range of 

u
V is: 

0 2 / 3
u v

V f bh! !  for Case I. 

Substitution of Z of Eq.(2) into Eq.(17) gives: 

,

2 2

1 /2 2
1

3 2 1 / / (3 ) 1

u u m

u v

N Nb
V f bh

Y b Y b Y s

!" #" #
= ! $ $% &% &

! + +' ( ' (

              (18) 

( )0, ,

2 2 2
1 /

3 1 3
v u u m v

V f bh N N f bh
s

! " # "
+

 

or with uniaxial 0,V
!  according to Eq.(20): 

,

2 2

0,

1 /
1

2 1 / / (3 )

u u mu
N NV b

V Y b Y b Y!

"# $# $
= " % &% &

" +' (' (

          (19) 

The shear strength 0,V
!  is determined at ultimate 

uniaxial bending, for N = 0 and Y !"  and is given for 
design as a fictive linear elastic parabolic stress distribution 
over the total depth h, with topvalue ,v f

f , according to 
(Fig. 3).  

Thus  

0, ,

2 2 2

3 1 3
v v f

V f bh f bh
s

!
= =

+
              (20) 

For Y !" , Eq.(19) represents the uniaxial loading 
case (see [3]) giving: 

,

0, ,

1
u u

u m

V N

V N

!

!

= "                (21) 

According to Eq.(19) is for biaxial loading :  

3

0, ,

1 ( / )u u

u m

V N
b Y

V N!

" #
= $ %& '& '
( )

 with: 

2
3 2 2

( / )1 / 2
( / )

1 / / (3 ) /

b Yb Y
b Y

b Y b Y b Y

!"
! = =

" +

. 

Thus: 

0.8

0, ,

1 1 0.5u u

u m

V N b

V N Y!

" #" # " #
= $ % +& '& ' & '& ' & '( )( ) ( )

             (22) 

2.2.2. Dominating Bending in the Weak Direction  (Sub-
case I): Z h!  and Y b! ) 

For Z h!  and Y b! , the same equations of Section 
2.2.1 apply with interchange of z and y; Z and Y, b and h.  

Again one component of the biaxial moment shows the 
linear relation with (1 - 

,/
u m

N N ).  

2.2.3. Dominating High Compression and High Biaxial 
Bending (Case II: Y b! ;  Z h!  in Fig. 5)  

2.2.3.1. Normal Forces (Case II)  

1 1 1
( ) 1

2 3 6
u c t c c

s YZ
N f bh ZY f f f bh

bh

+! "
= # $ + = # $% &

' (

  or: 

,

1
1

6

u

u m

Ns YZ

bh N

+
! = "                (23) 

According to the boundary conditions is 

( ) ,(5 ) / 6 / 1
u u m

s N N! " "                (24) 

2.2.3.2. Shear Force (Case II)  

For the ultimate total shear force applies: 

2

3 2 3
u v v

YZ YZ
V f f= =  = 

,

2
1

1

u

v

u m

N
f bh

s N

! "
#$ %$ %+ & '

             (25) 

Thus, for determining shear strength, is, due to the 
boundary conditions Z h!  and Y b! :.  

/ 3
u v

V f bh! …          (26) 

because 
,/

u u m
N N  cannot be lower than: 

( ),/ (5 ) / 6
u u m

N N s! " , according to Eq.(24).  

2.2.3.3. Bending Moments (Case II)  

As before, the resultant force of the tensile stress pyramid 
times the distance to the resultant compression force in the 
center of the cross section determines the bending moment.  

For bending applies, using Eq.(23): 

( ) ( )
2

, ,

1 1 1
6 2 4 2 4 4 24

u u

y c t c c c

u m u m

YZ h Z h Z N h N bh
M f f f bh f bh f s

N N

! !" "! !" "
= + # = # # $ # $ +% %& && % & % % %' '( (' '( (

 (27) 

�
&�

�
(

�� ��

�

��

�



24    The Open Construction and Building Technology Journal, 2013, Volume 7 T. A. C. M. van der Put 

( ) ( )
2

. .

1 1 1
6 2 4 2 4 4 24

u u

z c t c c c

u m u m

YZ b Y b Y N b N hb
M f f f bh f bh f s

N N

! !" "! !" "
= + # = # # $ # $ +% %& && % & %

' '( (' '( (

 (28) 

Knowing 
y

M , N and 
z

M , Y and Z are known and the 

found product YZ  should be smaller for determining bending 

failure than the value of YZ for shear failure according to 

Eq.(25), thus ( ) (3 / )
bending u v

YZ V f!      (29) 

2.2.4. Dominating High Biaxial Bending with Moderate 
Normal Force (Case III: Y b! ;  Z h!  in Fig. 6)  

For dominating tension, the condition Y b!  and  
Z h!  may apply according to Fig. (6).  

Fig. (6). Dominating tension with bi-axial bending for Z h!  and 

Y b! . 

 
2.2.4.1. Normal Forces (Case III)  

From the equilibrium equations follows that the ultimate 
normal compression force is:

3 3
1

1 1 1 1
6

u c u c

s YZ b h
N f bh T f bh

bh Y Z

! "! "+ ! " ! "
= # = # # # # #$ %$ %$ % $ %$ %$ %& ' & '& '& '

     (30) 

To replace YZ in other equations, this can be written with 

,u m c
N f bh= : 

3 3

,

1
1 1 1 1

6

u

u m

Ns YZ b h

bh Y Z N

! "+ ! " ! "
# # # # = #$ %$ % $ %$ %& ' & '& '

     (31) 

For applicability in this range: 

3 3

,

5 1 1
1 1 1 1

6 6 2

u

u m

s N s YZ b h s

N bh Y Z

!"# + #! !" "
$ = # # # # # $ #%& & % & %& %' '( (' (

  

In the limit case of Eq.(31) is for: h Z= ,  Y ! "  (or 

/ 0b Y ! ): 

3 2 3

,

1 1 1
1 1 1 1 3 3 1

6 6 2

u

u m

s Y b s Y b b b s N

b Y b Y Y Y N

!"! !" "+ + +! ! !" " "
# # = # # + # $ = #%&% %& && % & % & %& % & %& %' ' '( ( (' '( (' (

 (32) 

The same applies for b Y= , Z !" . 

2.2.4.2. Shear Force (Case III)  

The ultimate shear force is: 

2
1

3 2
u v

Z h Y b
b Y h Z

Z Y
V f bh

bh

! ! "# " "# #
! !$ %$ % %$

& &' ' %$= ! =
%$

$ %
& '

 2 2 2

3 2
v

bh Y Z hY bZ ZY
f

b h bZ hY bh

!"
+ # # #$ %

& '
     (33) 

In the limit case is for: ( h Z= ,  Y !" ) or for (b Y= , 

Z !" ): 2 / 3
u v

V f bh= , and / 3
u v

V f bh=  for ( h Z= , 

b Y= ). Thus when shear is determining is: 

2 / 3 / 3
v u v

f bh V f bh! !  

2.2.4.3. Bending Moments (Case III) 

The ultimate bending moment is: 

3 3 4 3
( 1) 3

1 1 1 1 1
2 6 2 2 2 2

y c

s YZh b h Z Z b h Z
M f

Y Z h h Y Z h

! "+ ! " ! " ! " ! " ! "
= # # $ $ $ $ $ + $ + $ +% &% & % & % & % & % &% &' ( ' ( ' ( ' ( ' (' (

 (34) 

For the limit case in accordance with Eq.(36): h Z= ,  
Y ! "  applies for 

y
M , giving:  

21

2 6
y c

s bh
M f

+
= , or half this value when b Y= , h Z=     (35) 

The limit case: b Y= , Z !"  applies to 
Z

M  leading to  

21

2 6
z c

s hb
M f

+
= ! , or: when b Y= , h Z= : 

21

2 12
z c

s hb
M f

+
= !     (36) 

In general is 
z

M : 

3 3 3 4
1 3

1 1 1 1 1
12 2 2 2 2

z c

s b h Y b Y h Y
M f YZb

Y Z b Y b Z b

! "! "+ ! " ! " ! " ! " ! "
= # # # # # + # + + #$ %$ %$ % $ % $ % $ % $ %$ %$ %& ' & ' & ' & ' & '& '& '

  (37) 

2.2.4.4. High Tensional Loading (Subcase III)

The equations o Case III can not strongly be simplified 
and should be tabulated for different values of /h Z and 

/b Y or solved by a numerical method for a given loading.  
Because for high tension and for lower qualities and large 
structural sizes the (long term) tensile strength will be lower 
than the compression strength and the behavior is linear elas-
tic, based on the ultimate tensile stress leading to:  

2 2

6 6y uz

t

M NM
f

bh hb bh
= + +     or:  

, , ,

1
y uz

y u z u t u

M NM

M M N
= + +     (38) 

In this equation tension has the positive sign.  

2.3. Conditions for Design Equations   

The given equations for biaxial bending are easy pro-
grammable for numerical solutions. However it always is 
necessary to provide simple exact Code rules. 

The boundary conditions of application of the equations 
are determined by the uniaxial bending cases and therefore 
for the following conditions.  

2.3.1. Loading Conditions 

Loading conditions for application of Case I equations: 

for: Y b!  ; Z h!   in Fig. (4):  

( ),1 / 1 / 2
u u m

N N s! ! " " .  

( )2
, 2

,

3 1 4 / ( 1)
0 1

6 3 1 12

u u mu

y m c

u m

s N Nbh N s
M f f bh

N s

!"! # +" +
$ $ # $%&%& %& %#' (' (

  

( ) ( )2 2
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M f hb N N f bh s! ! " ! +   

�*
�

�
�

& �

�

(

�

'+

)
,

��

��
��



Exact Stability Calculation for Timber Beams and Columns The Open Construction and Building Technology Journal, 2013, Volume 7    25 

,

, ,

2 2
1 1

1 3

u u

u v v f

u m u m

N N
V f bh f bh

s N N

! !" "
# $ = $% %& &% %+ ' '( (

 ( )0, ,

2
1 /

3
u u m v

V N N f bh!= " #   

In all equations is ( ) ( )1 / 3 1
c m

f f s s= + !  and 

( ), 1 / 2
v v f

f f s= + , where 
m

f  and ,v f
f  are the linearized 

values of the design regulations as the Eurocode.  

For dominating bending in the weak direction, (Subcase 
I: Z h!  and Y b! ), b and h should be exchanged in the 
Case I equations above. 

The loading conditions for application of Case II equa-
tions are: 

for: Y b! ;  Z h!  in Fig. (5)  

( ) ,(5 ) / 6 / 1
u u m

s N N! " "  

/ 3
u v

V f bh! ,  

( )2

,1 / / 4
y c u u m

M f bh N N! "  2 (1 ) / 24
c

f bh s! + , 

( )2

,1 / / 4
z c u u m

M f hb N N! "  2 (1 ) / 24
c

f hb s! + . 

The loading conditions for application of Case III equa-
tions are: 

for: Y b! ;  Z h!  in Fig. (6)  

( ) ( ),1 / 2 / (5 ) / 6
u u m

s N N s! ! " " !  

/ 3 2 / 3
v u v

f bh V f bh! ! ,  

( )2 1 / 24
c

f bh s + ! ( )2 1 /12
y c

M f bh s! + , 

( )2 1 / 24
c

f hb s + ! ( )2 1 /12
z c

M f hb s! +   

The condition for application of Subcase III for high a 
tension load 

u
N  is the ultimate state: 

2 2

6 6y z u

t

M M N
f

bh hb bh
+ + !     or:  

, , ,

1
y z u

y u z u t u

M M N

M M N
+ + ! .  

Tension has the positive sign in this equation. 

2.3.2. Linearized M N!  Design Equations 

All equations show a linear relation with the normal force 
N, except for the case of dominating bending in the main 
direction, Eq.(6), combined with low shear loading.  

For design, Eq.(6) therefore should be linearized and can 
be written, using Eq.(16): 

, 1

2

,

(3 3) (1 / ) ( / )
1

/ 6 3 1

y u m

m u m

M s N N b YN

f bh N s

! " + # # $% &
= #' ( ) *' ( #+ ,- .

,  

where 
m

f  is the fictive bending strength of the Euro-
code. This equation will be written: 

( ) ( ) ( )
21 1(3 3) (1 ) 3 3

1 1 1
3 1 3 1 3 1

y

s n s
m n n n

s s s

+ ! ! " "+# $
= ! = ! ! !% &! ! !' (

 (39) 

with ( )
1.8

1( / ) 4 5 /b Y b Y! = + . Similarly Eq.(12) can be 

written: 

( ) 2

1
1

3 1
z

s
m n

s

+
= ! " #

!
             (40) 

with 1.8

2 ( / ) / 0.5( / )b Y b Y b Y! = + . This linear relation 

between m and n, also applies for the shear strength Eq.(21). 

The bending strength is measured on slender beams with 

a span to depth ratio over 7 to 8 in a 3-point bending test. 

Then is: 
u u

V a M= , where a = L/2  is the distance of the load 

in the middle of the beam to the support. Thus 

/ /
u u

a h M V h=  is the shear-slenderness with critical value:  

2 2

, ,/ ( / 6) / ((2 / 3) ) / 4
c m v f m v f

a h f bh f bh f f= = . 

This critical value were below the bending stress de-
creases due to the shear loading and of where of maximal 
bending and maximal shear failure occur at the same time is 

/ 3
c

a h ! , providing the test-beam dimensions of the shear 
strength test for mean quality European softwoods. Eq.(21) 
thus may be written: 

 ,

0, , , ,

3
1

y c yu

y y u m

M a hMV N

V M a M a N

!

! ! !

= = = "
 or:

1 (3 / )
y

n h a m= !               (41) 

For a  = 3h, the boundary is reached where below the 
maximal possible bending moment will be reduced by the 
maximal possible shear force and Eq.(41) then becomes: 

1
y

n m= !               (42) 

This linear relation was the basis of the Dutch Code [8] 
and for a new proposal for the Eurocode, and should apply 
for all Codes as long as the shear calculation according to 
Eq.(41) is absent. Eq.(41) shows the parabolic Eurocode line 
to be a factor 2 too unsafe when a = 3h (see Fig. 7 and [3]).  

 

 

Fig. (7). Interaction curve cut off (by the dashed  bending-

compression strength shear line or no cut off by the drawn ultimate 

shear line). 
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0) and (m = 0; n = 1), and through the point on the curve for 
n = 0.5 (see [3]) where according to Eq.(39): 

13 3 / 2
0.5

3 1
y

s
m

s

+ !"
=

!
, (43)  

for n =0.5, giving: 

13 5 / 2
1

3 1
y

s
m n

s

! +"
= !

!
 when  0.5n ! ,  (44) 

and: 

1

3 1
1

3 3 / 2
y

s
n m

s

!
= !

+ !"
 when  0.5n ! .  (45) 

The same equations apply for dominating bending in the 
weak direction after interchange of b with h (and Y with Z 
and y with z).  

2.4. Design Procedure and Equations  

According to the derivation of the ultimate strength equa-
tions in Chapter 2, three cases are possible, depending on the 
location of the neutral line in the critical cross section. See 
the notations, for the meaning of the symbols and variables. 

2.4.1. Loading Conditions 

The loading conditions for application of Case I equa-
tions when: Y b!  ; Z h!  (Fig. 4) are:  

( )1 1 / 2n s! ! " " .  

The negative sign of n stands for tensile stress.  

( )
( )

23 1 4 ( 1)
0 1

3 1 2 3 1
y

s n s
m n

s s

! + +"#
$ $ ! $% &

! !' (

  

( )
( )

( )

2
1( 1) 3

0 1
(3 1) 2 4 3 1

z
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s s

++
! ! " # !

" "
  

( ) ( ),

2 2 2
1 1

3 1 3
u v v f

V f bh n f bh n
s

! " = "
+

( )0, 1V n!= "   

In all equations is ( ) ( )1 / 3 1
c m

f f s s= + !  and 

( ), 1 / 2
v v f

f f s= + , where 
m

f  and ,v f
f  are the linearized 

values of the design regulations as the Eurocode.  

For dominating bending in the weak direction, (Subcase 
I: Z h!  and Y b! ), b and h should be exchanged in the 
Case I equations above. 

The loading conditions for application of Case II equa-
tions are for: Y b! ;  Z h!  (Fig. 5):  

( )(5 ) / 6 1s n! " "  

( ) ( )0,/ 3 1 / 6 1 / 4
u v vf

V f bh f s bh V s!" = + = +    
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4 3 1

s

s

+
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"

, 

The loading conditions for application of Case III equa-
tions are (Y b! ; Z h! , Fig. 6):  

( ) ( )1 / 2 (5 ) / 6s n s! ! " " !  

The negative sign of n stands for tensile stress 

( ) ( )0, 0,1 / 4 1 / 2
u

V s V V s! !+ " " + ,  
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s
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4 3 1
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s
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! ( )
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2 3 1
z

s
m

s

+
! !

"
, 

The condition for application of Subcase III for high a 
tension load 

u
N  is the ultimate state: 

2 2

6 6y z u

t

M M N
f

bh hb bh
+ + !   or:  1

y z
m m n+ + ! .  

Where the bending strength 
m

f  is equal to the tensile 
strength 

t
f  Tension has the positive sign in this last equa-

tion.  

2.4.2. Design Equations 

For Case I: (Y b!  ; Z h! , in Fig. 4), of dominating 

bending in the stiff direction, applies: 

13 5 / 2
1

3 1
y

s
m n

s

! +"
= !

!
  when  0.5n !  (44) 

1

3 1
1

3 3 / 2
y

s
n m

s

!
= !

+ !"

  when  0.5n !  (45)  

with ( )
1.8

1 4 5 /b Y! = + . 

( ) 2

1
1

3 1
z

s
m n

s

+
= ! " #

!
     (40) 

with 
1.8

2 / 0.5( / )b Y b Y! = + ,  

based on the critical loading according to Chapter 3. 
From these equations /b Y  can be found and dimensions b 
and h can be adapted. The value of Z/h then follows from: 

( )
2

2
1 1 1

2 3

Z b b
s n

h Y Y

!"
+ # + = #$%

& '

    (2) 

If the ultimate shear loading 
2 2

u uy uz
V V V= +  is deter-

mining, /b Y  follows from: 

2
1

3 2
u v

b
V f bZ

Y

!"
= #$ %

& '
( )

0.8

0,1 1 0.5
b

n V
Y

!

"# "#
= $ % + &' ' &' &( )( )

    (17) 

with: 
0, ,

2 2 2

3 1 3
v v f

V f bh f bh
s

!
= =

+
, 

as ultimate uniaxial shear force with ,v f
f  as linearized 

ultimate shear stress of the Codes.  

For uniaxial loading is / 0b Y =  and eq.(17) turns to: 

, 0,/ 1
u

V V n! ! = "     (21) 

The uniaxial shear strength also is determining when:  

1 (3 / )
y

n h a m= !     (41) 

where for the test beam: 

2 2/ / (6 / ) / (2 / 3) / (4 )
u u m vf m vf

a h M V h f bh f bh f f= = =   
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For Subcase I, ( Z h!  and Y b! ), for dominating bend-
ing in the weak direction, the same equations as Case I ap-
ply, with interchange of z and y; Z and Y, b and h.  

For Case II: (Y b! ; Z h!  in Fig. 5), of high biaxial 
bending and compression, applies: 

( )
1 3

3 1
3 1 2

y

s Z
m n

s h

+ !"
= # #$ %

# & '
    (27) 

( )
1 3

3 1
3 1 2

z

s Y
m n

s b

+ !"
= # #$ %

# & '
    (28)  

From these two equations, h/Z and b/Y are known and 
can be controlled by: 

1
1

6

s YZ
n

bh

+
! = "     (23)  

When the shear strength is determining YZ follows from: 

3
u v

YZ
V f=  = ( )

2
1

1
v

f bh n
s

!
+

 = ( ), 1
v f

f bh n!  

( )0,

3
1

2
V n!= "     (25) 

where ( )(5 ) / 6n s! "  

For Case III (Y b! ;  Z h!  in Fig. 6) of biaxial bend-
ing with moderate normal force, is:  

3 3
1

1 1 1 1
6

s YZ b h
n
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!"+ ! !" "
# # # # = #$% % $ % $% $& &' '& '

    (31) 
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3 2 4
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!
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( )

4 3

3 3

3
1 1

3( 1) 2 2 2 2
1 1

3 1
1 1 1

z

Y Y h b Y

s b b Z Y b
m n

s b h

Y Z

!" ! ! !" " "
# + # + # + $% % $ % $ % $

+ & & &' ' ' $%= ( # +
$%# ! !" "

# # # # $% % $ % $
& &' '& '

   (37)  

Simplification by first eliminating /h Z  is not a right so-
lution because ii leads to extended complicated equations. 
Thus trial and error solutions are necessary to find /h Z   
and /b Y . Optimal dimensions for b and h can be chosen by 
equating: 

y z
m m=  or: / /b Y h Z= , which then are directly 

solvable. Else, if b and h are not free to choose, it provides 
the best start as initial value of / /b Y h Z= of the iteration 
process. Multiplying successively both variables with the 
same small factor give a parallel shift of the neutral line and 
multiplying one variable with the reverse of factor of the 
other variable will cause a rotation of the neutral line.  

For Subcase III for high biaxial bending with a high ten-
sile load 

u
N  applies: 

2 2

6 6y z u

t

M M N
f

bh hb bh
+ + !  or:  

, , ,

1
y z u

y u z u t u

M M N

M M N
+ + ! . Thus: 

1
y z t

m m n+ + !     (38)  

where tension has the positive sign in this equation. The 
same equation applies for first flow when 

t
f  is replaced by 

c
f , where compression then has the positive sign.  

Because by lack of knowledge the coupling of normal 
force with the ultimate shear force (as given by eqs.(21, 25, 
41)) is not accepted in international Codes. Thus for suffi-
cient reliability, the lower bound value of these equation has 
to be accounted leading to 1

y
m n+ =  and 1

x
m n+ =  for 

uniaxial bending cases. For biaxial loading, when the maxi-
mal bending tensile stress occurs at one point this condition 
becomes: 1

y x
m m n+ + = . 

This eq.(38) was therefore applied for the Dutch design 
Code TGB, derived and discussed in [11] and [3], using the 
exact equilibrium equations of Chapter 3, and was applied in 
many other building regulations and by the old still accept-
able version of the Eurocode. This equation and design 
method thus is approved during many decades (since 1972) 
as the Dutch Building regulation, TGB.  

The resultant bending curvature radius R in the ultimate 
state region follows from: 

2 2

1
t c t c

d f f

dx R E

! " "+ +
= = =

! !

  

where 2!  is the distance AD in (Fig. 4), as extension of 
th uni-axial value discussed in [2],  

2
2 2

YZ

Y Z

=
+

!   

3. EXACT EQUILIBRIUM EQUATIONS OF BEAMS 
UNDER BIAXIAL LOADING 

3.1. Introduction 

The last proposed design rules of the Eurocode for lateral 
buckling are not general and consistent and not based on 
exact theory and thus, as shown, are inherently totally not 
able to provide real and sufficient reliability in all circum-
stances. A general, exact, approach is therefore discussed 
here of the buckling and twist-bend buckling problem of 
symmetrical profiles loaded in bending in the two main di-
rections and at the same time loaded in torsion and compres-
sion. Accounted is for double eccentricities of the lateral 
loading, for instance by purlin hangers in vertical direction, 
in combination with bending in the horizontal direction by 
wind loading etc., and for the influences of the initial eccen-
tricities and the warping rigidity and for the failure criterion. 
The failure behavior, treated in Chapter 2, is converted to 
apparent linear behavior until fracture, because empirical 
strength is expressed in this way. Local buckling of thin 
webs and flanges is assumed to be prevented by stiffeners. 
The stability calculation for this last case is provided sepa-
rately in the Eurocode [4]. 

The here, in Section 3.2, given derivation is based on an 
extension of the general differential equations for combined 
loading in pure bending with compression of Chen and At-
suta [2], by adding double eccentrically applied lateral load-
ing in 1981, which is applied e.g. in [11]. This is in accor-
dance with the same extension of [2] since 2009. These 
equations account for the influence of warping and the Wag-
ner effect. (The Wagner effect is the torsional moment ap-
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pearing by the components  of the normal stresses in a 
warped cross section).The solution of the equilibrium differ-
ential equations is based on the virtual work equation, what 
also is the basis of the rigorous upper- and lower bound theo-
rems of limit analysis.  

3.2. Stability of Symmetrical Beams, Loaded in Compres-
sion and Biaxial Bending 

3.2.1. General Differential Equations 

From equilibrium of a deformed element, the general dif-
ferential equations are given by Chen 

and Atsuta ([2], eq.(2.179a)). For symmetrically beams 
these simplify to (see notations):  

( )'''' '' '' ''' 2 '' ' '' 0
y z t t y

EI w Fw M v M v M M!+ + " " + =
     (46) 

( )'''' '' '' ''' 2 '' ' '' 0
z y t t z

EI v Fv M w M w M M!+ + " " + =
    (47) 

( )'''' '' '' '' '' '' ' 0
w t y z y z t

EI GI K v M w M v M w M M! !" + + + " # " # + =
  (48) 

Further simplification is possible by omitting small 
terms. This can be seen as follows by using the first term of 
the Fourier expansion of the variables. 

For simply supported beams is for instance: 

( )sin /v v x L!=  and ( )cos /
t t

M M x L!=  and the term: 

2 '' '
t

v M  of eq.(46) has a maximum value of order: 

3 3/
t

v M L!" . Also the maximum value of ''' '
t

v M  is of this 

order. As shown later, the top-value of 2 '' '
t

v M  is: 

( ) ( )2 2/ L v ph qb! + , what is negligible with respect to: 

''
y

M q=  in eq.(46), because v b<<  and b L<< . In the 

same way, it can be shown that, when q = 0, the term: 

2 '' '
t

v M  is small with respect to the terms ( )''
z

M!  and 

''''
y

EI w  and the terms with 
t

M  and '
t

M  can be omitted in 

eq.(46) and for the same reason also in eq.(47). The values in 

eq.(48) ''
z

w M  and ''
z

w M!  are also comparable and equal 

to ( ) ( )2 2/ sin /
z

L w M x L! !"  and in the same way is 

'' ''
y y

v M vM qv!! !  . 

From Fig. (8), (or Fig. (1) of [11]) follows that the in-
crease of the torsional moment per unit length is:  

'
t p q p q

M ps qs pw qv p e q e! !" = + " + + +
     (49) 

Thus: ( )( )2 22 '' ' 2 /
t p q p q

v M v L ps qs pw qv p e q e! " "+ # + + +! , 

and for high eccentricities, e.g. / 2
p

s h=  and / 2
q

s b= , the 

terms / 2 / 2ph qb+  dominate because / 2w h<< ; 

/ 2v b<< ; / 2
p

e b! <<  giving: 

( )( )2 22 ' /
t

vM v L ph qb!" +
     (50) 

For small eccentricities , e.g. for 0
p q

s s= = , this term 

2 '
t

vM  is much smaller and it follows that this term is always 
negligible.  

 

Fig. (8). Loading and displacements of a beam cross section. 

 

In eq.(48), ''''!  can be replaced by ( )2 2'''' / ''L! " != # , 

in the usually applied order, giving:  
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EI L GI K v M q v M! "+ + # # $ # =
   (51) 

According to eq.(49) is: 

'
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 and with:  
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 is the twist buckling force, 

eq.(51) becomes: 

'' '' 0
v y v v

GI v M ps q e pw! !" + + " =
     (52) 

For high beams the term: pw  is small and can be ne-
glected in eq.(52).  

For high beams, 
y z

I I>>  and thus p q<< , is also the 

term: ( )''
z

M!  negligible in eq.(46) because: 

( )'' 4 ''
y y

M p M q! !" << = #
  

However in eq.(47) is, for high beams, ( )'' 4
y

M q! !"  not 
always of lower order than: p!   

or 
''''

z
EI v

 and can only be neglected for low beams. For 

high beams , eq.(46) to eq.(48) are: 

'''' '' 0
y

EI w Fw q+ ! =
    (46’) 

( )'''' '' '' 0
z y

EI v Fv M p!+ + " =
    (47’) 

'' '' 0
t y v

GI v M q e! !" # + # # =
    (48’) 

Eq.(46) is uncoupled and can be solved directly. This re-
sult is similar to bifurcation behavior and shows that the 
same loading path for failure is critical, and can be followed, 
as applies to elastic bifurcation. Thus, first allow only verti-
cal movement w  in z-direction by choosing !  and v  iden-
tical to zero, leading to eq.(46’). Then, at constant w, allow 
lateral buckling according to eqs.(47, 48) and solve eq.(46’) 
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separately and use the result in eqs.(47, 48). This will be 
shown in Section 3.2.2.  

For low beams, where 
y

I  and 
z

I  are not far apart, 
eqs.(46, 47, 48) become: 

'''' '' 0
y

EI w Fw q+ ! =
    (46’’) 

'''' '' 0
z

EI v Fv p+ ! =
    (47’’) 

'' '' 0
t y v

GI v M q e pw! !" # + # # " =
    (48’’) 

Now also the second equation is uncoupled and this re-

sult can be inserted in eq.(48’’) to show that also this equa-

tion is uncoupled when 
z y

I I! . Eq.(48) can be written:  

'' 0
v p q p q

GI qv pw ps qs pe qe! ! !+ " + + + + =
, and 

now is: 1 /
1

1 /

Z Y

ey

pv EI EI
qv pw qv qu

qu F F

!" #
# = # =$% #& '

, because accord-

ing to eq.(46’’) and eq.(47’’): 

( )
( )

4 4 2 2

4 4 2 2

/ / / /1 /

1 / 1 // /

z Z Y eyz ez

y ey eyy

EI L F L vw EI EI F Fpw EI F F

qv EI F F F FEI L F L vw

! !

! !

" ""
= = =

" ""
,  

where 
( )2 2/

ey y
F L EI!=

 and 
( )2 2/

ez z
F L EI!=

.  

Eq.(48’’) now can be written, with 

'' ''
y y

qv M v M v= ! = ! :  

( ) ( )
( )

1 / 1 /
'' '' 0

1 / 1 /

v ey ey

y v v

z y z y

GI F F F F

M v ps qe
EI EI EI EI

! !
" "

" + + =
" "

     (53) 

or:  
'' '' 0

m y m m
GI M v ps qe! !" + + =

            (53’) 

where 
,

v
GI

 
,

v
s

 and v
e

 are multiplied by 

( ) ( )1 / / 1 /
ey z y

F F EI EI! !  to get 
, , .

m m m
GI s e

  

It follows from eq.(53) that for 
z y

I I! , the first and 
third terms dominate and thus ''

y
M v  vanishes and thus also 

the coupling ends and the equation for pure torsional twist 
remains:  

'' 0
v v v

GI qe ps! !+ + =
            (53’’) 

Thus equation (46’), (47’) and (53’) now apply in general 

for high as well as low beams. Inserting the initial eccentrici-

ties 0 0 0, ,v w !
 these equations become: 

0( '''' '''') '' '' 0
y y

EI w w Fw M! + ! =
                 (46’’’) 

( )0( '''' '''') '' '' ' 0
z y y

EI v v Fv M M!" + + + =
     (47’’’) 

0( '' '') '' 0
m m y m

GI qe M v ps! ! !" + " + =
          (48’’’) 

where eq.(48’’’) is at the safe side when 0!  is important. 
The differential equations are now expressed in the usual 
applied form, but differ from these by the equivalent eccen-
tricities and rigidity 

m
GI  by accounting for warping effects.  

3.2.2. Solution of the Differential Equations 

Because every loading case is different in practice, and 
superposition is not allowed, it would be necessary to repeat 
the solution for every case. This can be, and is avoided here, 
by a solution based on the first expanded of the Fourier ex-
pansion of the loading. Then for any load combination the 
solution is known differing from each other by the resulting 
top value of the expanded terms. Eq.(46) is directly solvable.  

With 
( )sin /w w x L!=

; 
( )0 0 sin /w w x L!=

, and 

( )sin /q q x L!=
, is eq.(46’’’):  

0ey y

ey

F w M
w

F F

+
=

!
 with:  

2 2/
y

M qL !=   and:  

2 2/
ey y

F EI L!=    

Because 
( )0 ''

yF y
M EI w w= ! !

 , with top-value: 

( ) ( )2 2

0/
yF y

M L EI w w!= " , is: 

0

1 /

y

yF

ey

Fw M
M

F F

+
=

!
              (54) 

The solution of the coupled eq.(47’’’) and eq.(48’’’) is 

possible by the use of the virtual work equation, which also 

is the basis of theorems of limit analysis as the normality 

rule and the upper and lower bound method. The total work 

of an equilibrium system which is subjected to a possible 

virtual deformation remains zero. Thus for the differential 

equation (47’’’) and (48’’’): 
2 ( , ) 0! =L v  and 

3( , ) 0! =L v  

applies: 
2 ( , ) ( ) 0! =" i

L v f x dx
 and 

3( , ) ( ) 0! =" i
L v f x dx

, 

with sin( / )
i

f x L!=  as possible virtual displacement satis-

fying the boundary conditions. These equations thus are 

solved for the first expanded of the Fourier sinus series of 

deformation and loading: 

sin( / )v v x L!= , 0 0 sin( / )v v x L!= , sin( / )x L! ! "= , 

0 0 sin( / )x L! ! "= , sin( / )p p x L!=  

sin( / )
z z

M M x L!=
, where 

2 2'' ( ) /
z z

p M d M dx= =
. 

For the main loading also a second expanded term is ac-

counted to show its small influence. Thus: 

( ) ( )1 3sin / sin 3 /! != +
y

M M x L M x L
 and: 

( ) ( )1 3sin / sin 3 /q q x L q x L! != +
 

2

0

( , ) ( )! ="
L

i
L v f x dx

 

( )
4 2

2 2

04 2

0

sin sin

L

z

x x
EI v v Fv

L L L L

! ! ! !" # #$ $
% % %& ' & '(

) )* *+
,

 

!
2

2

2
sin

x

L L

! ! "#
$% &

' (
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1 3

3
sin sin

x x
M M

L L

! !" #$ $% %
& +' () * ) *

+ +, ,- .
2

2
2 cos sin

x x

L L L

! ! !
"

# #$ $
+ %& ' & '

( () )

1 3

3
cos 3 cos

x x
M M

L L

! !" #$ $% %
+& '( ) ( )

* *+ +, -  
2

2

1 32

3
sin sin 9 sin

x x x
M M

L L L L

! ! ! !
"

# $% % %& & &
+ ' +( )* + * + * +

, , ,- - -. /  
2

2

2
sin 0

z

x
M dx

L L

! ! "#$
% & =' ()

* +,   

3

0

( , ) ( )! ="
L

i
L v f x dx

( )
2 2

2 2

02 2

0

sin sin

L

m

x x
GI v

L L L L

! ! ! !
" "

# $ $% %
& & + '( ) ( )*

+ +, ,-
. 1 sin

x
M

L

!" #$
+% & '

( )*  

3

3
sin

x
M

L

! "#$
+ %& '

( )*  

2

1 3

3
sin sin sin

m

x x x
e q q

L L L

! ! !
"

# $% % %& & &
+ +' () * ) * ) *

+ + +, , ,- .

2sin 0
m

x
ps dx

L

! "#$
+ =% &'

( )*    

In these equations are: 

( )2 2 2

0 0 0

sin sin sin
2

L L

x x x
dx d d

L L L L

!! ! ! ! !
" "

# # #$ $ $
= = =% & % & % &

' ' '( ( (
) ) )

  

( )3

0

4
sin

3
d

!

" " =#
; 

( ) ( )2

0

4
sin sin 3

15
d

!

" " " = #$
;  

( ) ( )2

0

2
sin cos

3
d

!

" " " =#
;  

( ) ( ) ( )
0

2
sin cos cos 3

5
d

!

" " " " = #$
. Thus the equations be-

come: 

( )
4 2 2 2 2 2

0 1 3 1 34 2 2 2 2 2

4 4 2 2
2 2 3

2 2 3 15 3 5
z

EI v v Fv M M M M
L L L L L L

! ! ! ! ! ! ! !
" " " "# # # + + #

 
2 2 2

1 32 2 2

4 4
9 0

3 15 2
z

M M M
L L L

! ! ! !
" "# + # =

, and: 

( )
2 2 2

0 1 3 1 32 2 2

4 4 4 4
0

2 3 15 3 15 2
m m m m

GI v M v M e q e q ps
L L L

! ! ! ! !
" " " "# # + # + # + =

Thus:
( )

2

0 1 32

8 8
0

3 15

!
" "

! !
# # # + # =

z z
EI v v Fv M M M

L , 

and: 

( )
2 2 2

0 1 3 1 32 2 2

8 8 8 8
0

3 15 3 15
! ! ! !

" " " " " " "
# # + # + # + =

m m m m

L L L
GI vM vM e q e q p s

.  

With: 

3
1

1

8
1

3 5!

"#
= $ %&

' (
e

q
q q

q
; 

3
, 1

1

8
1

3 5!

"#
= $ %&

' (
y e

M
M M

M
;   

2

2ez z
F EI

L

!
= ; 

2
1

2m m

y

qL
e e

M!
=

  

and:

2 2
1 /!

=
m m

z

pL
s s

M
, are these equations: 

( )0 , 0!" " " " =
ey y e z

F v v Fv M M
     (55) 

( ) 1 1

0 , , 0! ! !" " " " =
m y e m y e m z

GI M v e M s M
     (56) 

From these last two equations, v  and !  can be re-

solved, giving:  

( ) ( )
( )( )

1 1 1

, , , 0 0 ,

1 2

, ,

!" + + + "
=

" " "

z m m y e m y e y e m ey m m y e

ey m m y e y e

M GI e M s M M GI F u GI e M

v

F F GI e M M
 (57) 

and because 
( ) ( ) ( )

2

, 0 0 02
''

z F z z ez
M EI v v EI v v F v v

L

!
= " " = " = "

, 

is: 

( )( ) ( )
( )( )

1 1 2 1

, , 0 , 0 0 ,

, 1 2

, ,

!+ " + + + "
=

" " "

z m m m y e y e m y e ey m m y e

z F ez

ez m m y e y e

M GI s e M M GI M v F v GI e M

M F

F F GI e M M
 (58) 

with 
z

M  and ,y e
M

 of the first order moments. 

In Table 1, values of ,y e
M

 are given based on the first 

expanded: 8 / 3M !  and based on the full series (or exact), 

and based on the mean value of M of middle half of the 

beam (the part that deflects the most at buckling). Because 

the virtual work equation follows ( )2sin /x L!  along the 

length of the beam, giving the value one at the middle half of 

the beam and the value of about zero over the other parts, 

only the middle part accounts for the work done. 

4. CONCLUSIONS  

The given equations of the biaxial bending strength are in 

accordance with the limit analysis method and thus based on 

elastic-full-plastic behavior. Therefore, with the restriction of 

applying a mean hardening stress after initial “flow”, the 

analysis is rigorous and the strength prediction realistic and 

the result has to be applied in the Building Codes to provide 

the by Euro-law prescribed sufficient precise reliability cal-

culation (also for totally new, never occurred and never 

measured, cases). 
For the highest lower bound solution of biaxial bending 

strength is necessary that the neutral axis is a straight line 
and that unlimited flow in pure compression occurs, thus 
when there is bending-tension failure and when the shear 
stress is carried in the elastic part of the cross section. This is 
an improvement with respect to the thus far applied, (not 
unique) old model of [7] restricting the ultimate plastic com-
pression strain at failure. 

The derived general expressions in coordinates of the 
boundary line of the full compression area provide 3 cases 
for design. For simplicity of design, is chosen for separate 
ultimate shear strength and ultimate bending-compression 
strength equations.  

The equations contain also the solution for uniaxial bend-
ing cases, which are already shown to precisely explain and 
fit data by the applied elastic full plastic limit analysis. 
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Table 1.  Values of Mye  

Bending Bending moment 
8

3
M

!
 

/

exact

M !
 

/ 2

mean over

middle L

 

0.93

M

 1

M

 1

M

 

1.85

M

 1.75

M

 1.67

M

 

/ 4

1.45

PL

 

/ 4

1.35

PL

 

/ 4

1.33

PL

 

2 / 8

1.14

qL

 

2 / 8

1.13

qL

 

2 / 8

1.09

qL

 

/ 4

1.03

PL

 

/ 4

1.04

PL

 

/ 4

1

PL

 

3 /16

1.54

PL

 

3 /16

1.44

PL

 

3 /16

1.33

PL

 

 

st1 expandded

insufficient  

( )0.6 0.4M k+

 

0.4M!

 

 
The value of /

t c
s f f=  appears to be about constant for 

all determining load combinations of bending with compres-
sion, indicating again (by the data of [7]) that there always is 
failure by the ultimate tensile strength. A volume effect by 
stress distribution thus needs not to be regarded as follows 
from the uniaxial data. The volume effect thus now is caused 
by the volume alone due to decreasing quality by volume 
increase. 

The solutions of the most general equilibrium equations, 
eq.(54) and eq.(58) are exact, complete and universal, appli-
cable for any material and load combination, based on the 
virtual work principle, which also is the basis of the lower 
and upper bound solutions of limit analysis and which al-
ways provides an exact solution however complex the equi-
librium equations are. The equilibrium equations have to 
satisfy the mentioned biaxial failure criterion of the stability 
problem, which is always a strength problem for full scale 
timber beams as empirically verified in the past.  
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NOTATIONS  

A = Area of the cross section of the beam 

b, h  = Beam dimensions  

y
EI , 

z
EI  = Bending rigidity about the y-axis and z-

axis   

w
EI   = Warping rigidity 

,e s   = Eccentricity of the lateral loading  

F  = Normal force 

t
F   = Twist buckling force: 

( )( ) ( )2 21 / /
t t w t y z

F GI A EI L GI I I!= + +   

, ,
t c v

f f f   = Real ultimate tensile, compression and 
shear stress  

,,
m v f

f f  = Ultimate fictive, linearized, bending and 
shear stress of the Codes. 

( ) ( )3 1 / 1
m c

f f s s= ! + ;  

( ), 2 / 1
v f v

f f s= +  

t
GI  = Torsional rigidity ( St. Venant) 

v
GI  = Equivalent torsional rigidity for high 

beams ( )( )( )2 21 / 1 /
t w t t

GI EI L GI F F!= + "  

m
GI  = Equivalent torsional rigidity 

( ) ( )1 / / 1 /
v ey z y

GI F F EI EI= ! !   

K  = Wagner effect ( )/
y z

F I I A= ! +   

L   = Span, or effective buckling length 

y
M , 

z
M   = Bending moments about resp. the y-axis 

and z-axis 
'

y
M

 = Derivative of y
M

 to x,   

t
M   = Torsional moment about the beam-axis 

m  = Normalized moment 
26 / ( )

y y m
m M f bh=   

26 / ( )
z z m

m M f hb=  

N = Normal loading; 
u

N  = applied maximal 
value; 

.u m c
N f bh=  ultimate strength 

value. 

n = Normalized normal loading, 

,/ / ( )
u m c

n N N N f bh= =   
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,p q , P  = Lateral loading  

s = Ratio of real ultimate tensile and com-
pressive stress /

t c
s f f=   

V = Shear force. The total ultimate resulting 
shear force 

u
V 2 2

x y
V V= +  

v, w  = Displacements 

Y, Z  = Coordinates of the boundary full plastic 
region  

,
t c

! !   = Tensile and compression stress 

,
t c
! !    = Tensile and compression strain  

!   = Rotation 
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